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Local weather impacts melting of one of Antarctica's fastest
 

Local weather plays an important part in the retreat of the ice shelves in West Antarctica, according to 
new research published in the journal Nature Communications. 
 

The study led by scientists at the University of East Anglia (UEA) of the Pine Island Glacier (PIG) used a unique five
year record to study how the interactions between the ocean and the atmosphere, as well as changing currents, control 
how heat is transported to, and beneath, the Pine Island Ice Shelf. 

Pine Island Glacier is one of the fastest melting glaciers in Antarctica with some studies suggesting that its eventual 
collapse is almost inevitable. 

Previous research suggested more warm water was circulating under the ice shelf and melting it more rapidly, l
to an increasing contribution to sea level rise. However, relatively little was known about what drives changes in 
ocean conditions in this remote part of Antarctica due to its inaccessibility. Some studies suggested that the ocean 
conditions close to Pine Island Glacier are influenced most strongly by winds at the edge of the continental shelf, 
some 400 km to the north, which in turn respond to changes in tropical ocean temperatures.

The study looked at the impact of shelf-edge winds and found this to be less direct than previously thought, and that 
local atmospheric conditions and ocean circulation are the main drivers of ocean temperature changes in the critical 
350-700 m depth range, over the period of observation. 

The ice shelves of the Amundsen Sea -- an area of the Southern Ocean -- protect much of the West Antarctic Ice Sheet 
from collapse. These ice shelves are rapidly losing mass and understanding the mechanisms which
conditions and drive melting of these glaciers is hugely important. 

The researcher found a strong annual cycle in the exchange of heat between the ocean and the atmosphere, which 
drives changes in ocean temperature. While these changes are less evident in deeper waters, through convection and 
mixing the heat can penetrate deeply enough to have a major impact on melting and influence the temperature of the 
water entering the cavity under the glacier. 

They detected colder weather period from 2012-13, however, a separate study has shown that this only led to a partial 
slowdown of the glacier's retreat, and many glaciers in the region have been retreating for d
down. 

Changes in the direction of the ocean currents also cause changes in temperature close to Pine Island Glacier. The 
colder period was associated with a reversal in the currents that transport heat into and around the bay.

Most of the ocean data around Antarctica are snapshots of conditions -- and many areas are only visited once every 
one or two years, if that. A continuous five-year time series near Pine Island Glacier, one of the fastest
glaciers in Antarctica, lets us see what is happening between these snapshots, giving us insights into the processes 
driving the melting of Pine Island Glacier. 

It is likely that other ice shelves around Antarctica that are melting due to warm ocean conditions will also be strongl
influenced by local atmospheric conditions. This would underline the importance of atmospheric and ocean 
monitoring close to the Antarctic coasts to give early warning of future changes in ice she
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Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and

temperature are implicated in the retreat and growing contribution to sea level rise of PIG and

nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly

constrained due to a lack of multi-year observations. Here we show, using a unique record

close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at

seasonal and interannual timescales, including a pronounced cold period from October 2011

to May 2013. This variability can be largely explained by two processes: cumulative ocean

surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean

currents and associated heat transport within Pine Island Bay, driven by a combination of

local and remote forcing. Local atmospheric forcing therefore plays an important role in

driving oceanic variability close to PIIS.
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T
he ice shelves of the Amundsen Sea buttress a large portion
of the West Antarctic ice sheet, protecting it from
collapse1,2. The deep ocean temperatures close to the

Amundsen Sea continental shelf are some of the warmest around
Antarctica and have warmed by approximately 0.2 �C per decade
since the early 1990s (refs 3,4), although data on the Amundsen
Sea continental shelf itself are sparse and no significant trend is
evident5. The glaciers in the Amundsen Sea sector already
produce the greatest mass loss contribution of all the major
drainage basins in Antarctica, and this mass loss increased by
59% between 1992 and 2006 (refs 6,7). Several studies have
suggested that the irreversible retreat of some of the Amundsen
Sea ice stream grounding lines is imminent or already under
way8–11, due to a combination of ocean forcing5,12–14 and
backwards-sloping bedrock9,10,12. Therefore, understanding the
mechanisms that control ocean conditions within the Amundsen
Sea is of paramount importance.

The ocean-driven melting of the Pine Island Ice Shelf (PIIS)
arises as a result of the relatively warm, salty circumpolar deep
water (CDW) that floods the lower part of the water column
across the Amundsen Sea continental shelf. The thermocline
between 300 and 700 m separates this CDW from the colder but
fresher winter water (WW) layer above5,13. The water that
reaches the grounding line of Pine Island Glacier (PIG) (where
the ice shelf goes afloat) must pass between a ridge at around
700 m below sea level and the bottom of the ice shelf at around
350 m below sea level12. Therefore, the depth of the thermocline
and the associated average temperature between these depths
determines the heat available for melting within the cavity
beneath PIIS. There is particular sensitivity to the ocean
temperature at the grounding line, where the highest melt rates
are observed12,15; the water reaching the grounding line is likely
to originate from around 700 m depth as it enters the cavity5.

CDW reaches PIIS via a network of glacially carved troughs
in the seabed13. CDW primarily flows onto the continental
shelf through shelf-edge depressions at 113�W and 102–108�W
(henceforth the central and eastern troughs, respectively; Fig. 1a;
(refs 16–19)). An undercurrent flowing eastwards along the
continental slope20 beneath the surface-intensified westward
Antarctic Slope Current turns onshore at these locations.
Several processes have been suggested to explain the transport
of water onshore at the continental shelf break; these include
topographic steering, vortex stretching that pushes the current
southwards on the downstream side of the depression21, and
on-shelf flow due to upslope transport in the bottom Ekman
layer22. The CDW that reaches PIIS appears to be a combination
of water originating from both the central and eastern troughs19,
which join paths and mix before flowing southwards into Pine
Island Bay (74–75�S, 105–100�W).

The hydrographic conditions within the Amundsen Sea are
known to vary seasonally17,23 and interannually5,13,14,24. Various
model studies have found a relationship between wind forcing at
the continental shelf edge and variability in the onshore flux of
CDW17,18,25, and observational studies provide some support for
this hypothesis5. However, the processes that modify the ocean
advective heat transport between the shelf break and the ice shelf
cavities (approximately 450 km apart) are not well understood.
Furthermore there is growing evidence that intense surface heat
and salt fluxes within coastal polynyas can modify the ocean
forcing of PIIS26 and similar ice shelves27. Understanding of the
variability of CDW transport into and within the Amundsen
Sea has been limited by lack of observations, especially during
winter. Various research cruises have provided snapshots of the
hydrographic conditions during summer, but until several
mooring recoveries in 2014 only a single 11.5-month near-
bottom record had been obtained in Pine Island Bay28.

Here we present mooring observations spanning the conti-
nental shelf leading to PIIS. These include a 5-year record of
temperature and salinity (the BSR5/iSTAR9 time series) located
within 10 km of the southern edge of PIIS, where the main
meltwater outflow has been observed5,13,29,30. We compare this
with three other 2-year mooring records on the continental shelf
and a combined time series from three consecutive moorings in
the central trough at the continental shelf edge. Of these latter
moorings, BSR12 (2009–2011) and iSTAR1 (2012–2014) were
almost co-located (1.5 km apart and within one Rossby radius) on
the continental shelf at approximately 605 m depth, while BSR13
(2011–2012) was 22.3 km away, on the continental slope at
approximately 1,075 m depth. We find that there is considerable
variability in the ocean conditions close to PIIS, which is not
replicated in the shelf-edge moorings. Instead, it seems that local
surface fluxes and changes in the ocean circulation within Pine
Island Bay drive the changes observed close to the ice shelf.

Results
Variability in ocean conditions within Pine Island Bay. The
time series of temperature above in situ freezing point for BSR5
and iSTAR9 (green markers in Fig. 1b) shows considerable
variability (Fig. 2c). There is a marked seasonal cycle evident in
the depth of the thermocline (for example, the depth of the 2.5 �C
above freezing isotherm, upper white line). This seasonal cycle is
typified by a deep thermocline and cold temperatures in austral
spring (October–December) and generally warmer conditions in
all other seasons. Superimposed on this seasonal cycle are inter-
annual changes in temperature, with a pronounced cold period
extending from October 2011 to May 2013 (thick blue line above
Fig. 2c). During the peak of this cold period, the seasonal cycle is
amplified, extending to greater depths and with cold conditions
persisting for longer than during the relatively warm period of
February 2009 to February 2011 (thick red line above Fig. 2c).
The depth of the 3.25 �C above freezing isotherm (lower white
line, Fig. 2c) does not have a marked seasonal cycle and is
dominated by relatively smooth interannual variability. The
temperature minimum at all depths occurs between October 2012
and January 2013, with the deep temperatures lagging behind the
shallow temperatures by up to 3 months.

We investigate whether the cold conditions observed in
2012–13 were unusual by calculating the average temperatures
from all ship-based observations within Pine Island Bay (south of
74�S and east of 105�W), and comparing these with austral
summer (January–February) mean temperature data from the
BSR5/iSTAR9 time series (Fig. 3). The mooring data are consi-
stent with the ship data for the same years, and it is apparent that
temperatures between 350 and 700 m are colder during 2012 than
any other summer when ship-based observations exist for this
location. The mooring data show that the austral summer of 2013
(shortly after the peak of the cold period) was colder still.

The temperature from shorter mooring records in the
region sheds light on the connections between the temperature
variability observed at BSR5/iSTAR9 and broader oceanographic
changes. The temperature time series at iSTAR8 (Fig. 2b, magenta
line) matches very well to that at BSR5/iSTAR9 (Fig. 2b, green
line) during its 2-year deployment. Similar variability is also seen
at iSTAR7, on the edge of the bay (around 100 km away), and to a
lesser extent at iSTAR6, almost 200 km away in Pine Island
Trough (Supplementary Fig. 1). Therefore, the variability
observed at BSR5/iSTAR9 represents large-scale changes that
extend across Pine Island Bay.

At the peak of the cold period in spring 2012, the total ocean
heat content above freezing (see Methods) between 400 and
700 m at BSR5/iSTAR9 was 1.25 GJ, a 62% reduction from the
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3.28 GJ observed in spring 2009 (Fig. 2a). The reduction in
temperature above freezing between spring 2009 and spring 2012
was 71% at 400 m, 70% at 500 m, 50% at 600 m, and 20% at
700 m. The average heat content between 400 and 700 m for the
entire cold period was 2.37 GJ, a reduction of 32% relative to the
2009–10 average of 3.49 GJ. Due to the relationship between
ocean temperature and buoyancy-driven flow along the ice
boundary within the cavity, observed basal melt rates are assumed
to respond quadratically to changes in temperature above
freezing31,32, which would amplify the impact of these changes
on the melt rate of PIIS. With only a single point measurement of
temperature and salinity close to the depth of the meltwater
outflow (430 m on BSR5), we cannot quantitatively assess the
impact on melt. However, a ship-based survey in early 2012
showed that meltwater production had reduced to less than half
of its 2009–10 value5, so it is reasonable to assume that the
reduction in melt at the peak of the cold period was even greater.

The PIIS front advanced considerably between 2009 and 2013,
almost reaching the location of iSTAR8 before a large iceberg
calved in November 2013 (see coloured lines in Fig. 1b). This
event was responsible for moving iSTAR9 downslope (visible in
the time series of the depths of the moored sensors, black lines in
Fig. 2c), but otherwise caused no major shift in the temperature
(shading in Fig. 2c) or currents (Supplementary Fig. 2) observed
at BSR5/iSTAR9. The changing shape of the ice tongue may have
influenced the circulation around Pine Island Bay and the
distribution of the polynyas. However, it seems unlikely that this
alone could account for the deep ocean changes in temperature
and velocity that are observed across Pine Island Bay.

The impact of local surface heat fluxes. One hypothesis for the
variability within Pine Island Bay is changes in the heat flux at the
ocean surface. Heat loss at the ocean surface will drive progressive
cooling and deepening of the mixed layer, potentially explaining
the near-freezing temperatures observed at 430 m during the cold
period (Fig. 2c; Supplementary Fig. 2). In addition, localized
intense heat loss could lead to small-scale deep convective
chimneys that then mix laterally to cool the intermediate water

masses33. To analyse quantitatively the impact of surface cooling
we compare the change in heat content above freezing between
400 and 700 m with the total heat flux across the ocean surface
due to atmosphere-ocean exchange and due to sea ice production
and melt34,35 averaged over the blue box in Fig. 1 (approximately
101.5–103.2�W, 74.6–75.2�S). All reanalyses in this region are
prone to errors and uncertainties36, as shown by the differences
between the ERA-Interim37 and NCEP-38 derived heat fluxes in
Fig. 2a; therefore, we use the average of the two products as the
best guess. An evaluation of the importance of the additional heat
flux derived from sea ice formation and melting is provided in
Supplementary Fig. 3.

To compare the surface heat flux with the observed ocean heat
content changes, we first remove the time-mean heat flux,
assuming that the net heat loss at the surface is balanced by a
steady supply of heat by ocean advection and mixing, an
assumption that we investigate in the following section. In
addition, we ignore the largely unobserved changes in heat
content above 400 m; during the cold period the temperature at
400 m is close to the surface freezing point, so we assume that the
layer above is isothermal, meaning that the unobserved changes
will be negligible. However, when the mixed layer is shallow
(during periods of warming or generally warmer conditions), the
influence of surface fluxes on the deeper water masses will be less
than our calculation suggests.

Despite these simplistic assumptions, the observed changes in
heat content agree well (r¼ 0.65) with those derived from
accumulated surface heat fluxes (Fig. 2a), suggesting that the
surface heat fluxes can explain most of the seasonal variability in
ocean temperature, and a limited portion of the interannual
variability. Between spring 2009 and 2012, the surface heat fluxes
can account for a reduction in heat content of 0.7 GJ, one-third of
the 2.1 GJ reduction observed (Fig. 2a). The simulated heat
content in spring 2009 is lower than observed, probably due to
the relatively shallow thermocline leading to heat content changes
in the upper water column, at depths shallower than the obser-
vations. For similar reasons the warm peaks in 2010 and 2011 are
over-estimated. The under-estimation of the cold conditions in
2012 suggests that additional processes, such as changes in ocean
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Figure 1 | Ocean observations in the Amundsen Sea. (a) Location of study area; IBCSO bathymetry41 (shaded, see legend) and ice shelf edges from 2004

(red outlines); central (CT), eastern (ET) and Pine Island (PIT) troughs, Pine Island Bay (PIB), Pine Island Ice Shelf (PIIS); mooring locations (labelled; iSTAR

moorings circles; BSR moorings stars) and the region over which the surface fluxes are averaged (blue box). (b) Enlargement of the Pine Island ice front

showing the position of the ice front on 12 January 2012 (green dot-dash line), 6 November 2013 (before iceberg calved; cyan dashed line), 18 November

2013 (after iceberg calved; magenta dotted line).
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heat advection, may also have contributed to the cooling during
2011 and 2012.

The impact of changes in ocean circulation. The temperature
variability at 600 m and deeper is characterized by a steady

decline in temperature from mid-2010 to late 2012, followed by
warming during 2013 into the start of 2014. This smooth varia-
bility suggests relatively little influence from surface heat fluxes
locally, apart from during the peak of the cold period when the
thermocline deepened to around 700 m. The other major source
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of variability in ocean temperatures in this region is likely to be
from lateral advection or shifts in horizontal temperature gra-
dients associated with fronts. As a proxy for this, the ocean
current records at iSTAR7, iSTAR8 and BSR5/iSTAR9 are
investigated, and compared with water mass properties (Fig. 4).
There is a strong connection between the component of the
current heading towards PIIS (PIG-wards currents) and water
mass properties, with high temperatures across a range of depths
(430–670 m) associated with flow towards the ice shelf at iSTAR7
and iSTAR8 and away from the ice shelf at BSR5/iSTAR9. During
the cold period, the flow reversed, with the currents at BSR5/
iSTAR9 being towards the ice shelf, and those at iSTAR7 and
iSTAR8 being away from the ice shelf. While most ocean mod-
elling studies14,26 and observational evidence13,29 suggest that the
circulation around Pine Island Bay is cyclonic, with outflow at
BSR5/iSTAR9, one modelling study39 produced an anticyclonic
deep ocean circulation with flow into the cavity close to BSR5/
iSTAR9, suggesting that this may be a stable alternative flow
regime when the thermocline is deep. A schematic representation
of these changes is shown in Fig. 4e,f. Note that the clockwise gyre
in Pine Island Bay observed during previous cruises is associated
with a doming of isopycnals and isotherms in the centre of Pine
Island Bay by 100–200 m13,29; a reversal in this circulation will
have been associated with deepening of these isopycnals by
several hundred metres.

Changes in temperature and salinity are positively correlated,
such that a drop in temperature corresponds to a decrease in

salinity and potential density (Fig. 4a–d, Supplementary Fig. 4).
The salinity of the WW increases by around 0.2 g kg� 1 relative to
ship-based summer observations (Fig. 4b,c), changing the mixing
line between WW and CDW (Supplementary Fig. 5) such that
water at all intermediate depths becomes colder (for example,
Fig. 4a). The observed changes in WW properties are likely due to
a combination of temporal changes in sea ice formation (Fig. 4e,f)
and advection of WW from regions with climatologically higher
rates of sea ice production. Therefore, the variability within the
thermocline can be seen as a combination of isopycnal displa-
cements (likely driven by changes in circulation and the volume
of CDW) and changes to the vertical structure of the water
column driven by surface forcing, sea ice formation and
subsequent mixing.

The observed changes in circulation patterns could be driven
by the changes in surface heat fluxes and sea ice production,
which would alter the lateral density gradients in and around Pine
Island Bay, and thus alter the currents, or by changes in local
wind stress. Local zonal wind stress is weakly correlated (r40.4)
with changes in zonal velocity and temperature at BSR5; this
correlation is the strongest observed across the continental shelf
at any lag (Supplementary Fig. 6). It is also plausible, as has been
suggested by several previous studies5,13,16,17, that changes in
Pine Island Bay are driven by changes in the CDW flux onto the
continental shelf 400 km to the north. The discontinuous
mooring time series in the central trough (Fig. 2b, grey lines)
show that the temperature of the inflowing CDW was relatively
steady over the 5-year period of the moorings, and is not
consistent with a major deepening of the thermocline at this
inflow location. Even if the temperature remains unchanged, the
volume flux of CDW could be altered through changes in on-shelf
velocity. Measurements of on-shelf velocity at iSTAR1 and BSR12
offer an incomplete representation of the total on-shelf flux of
water, but do show that the on-shelf flow was stronger and more
variable during the relatively warm 2009–11 period compared
with 2012–14 (Supplementary Fig. 7a). However, the overall
agreement between the on-shelf velocity and temperatures in Pine
Island Bay is weak (Supplementary Fig. 7b). It is therefore
unlikely that variability in conditions in the central trough is the
dominant driver of the seasonal or interannual variability that we
observe in Pine Island Bay.

The other main pathway for warm CDW onto the continental
shelf is the eastern trough. Changes in the zonal wind and
associated wind stress curl to the north of the eastern trough have
been hypothesized5 as a driving mechanism for the cold
conditions in 2012. The zonal wind between 68–72�S and
100–115�W was very anomalous in 2011, and did not recover to
the 30-year mean until late 2013 (Supplementary Fig. 8), which
may have contributed to the anomalous conditions in Pine Island
Bay during the cold period. If we assume that the shelf-edge wind
stress in this region drives on-shelf CDW flux, then cumulative
anomalies in this quantity should be related to variability in CDW
volume in Pine Island Bay. The anomalously negative wind stress
throughout the period is consistent with the longer-term decline
in deep temperatures, although not the recovery to warm
conditions in 2013–14 (Supplementary Fig. 8). Nevertheless, a
reduction in inflow, such as that hinted at by the shelf-edge
moorings (Supplementary Fig. 7), could have enhanced the
impact of the surface heat flux variability and promoted the local
changes in circulation that are responsible for the shorter-term
variability.

Discussion
A considerable decrease in temperature above freezing and ocean
heat content was observed over a 20-month period that is likely to
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have had a major impact on melt rates under PIIS that were
responsible for a temporary slowing of its outflow40. This cold
spell seems to arise from a combination of cooling by local surface
heat fluxes and changes in circulation and ocean heat advection.

Surface forcing within Pine Island Bay can explain much of the
observed upper water column (that is, shallower than 600 m)
variability close to PIIS at seasonal to interannual time scales,
predominantly through cumulative surface heat fluxes (Fig. 5).
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There is a strong annual cycle in the surface heat fluxes that is
also present in the depth of the thermocline, but less evident in
the temperature of the water below the thermocline. Nevertheless,
through convection and mixing, the surface fluxes can penetrate
sufficiently deeply into the ocean to have a major impact on
melting close to the grounding line at the peak of the cold spell,
and influence the temperature of the water entering the cavity
throughout the observed period. The temperature variability in
Pine Island Bay is also strongly correlated with changes in
circulation, with the cold period of October 2011 to May 2013
associated with a reversal in the currents that transport heat into
and around Pine Island Bay. The cause of the circulation change
is not known, but it is most likely a combination of local and
remote forcing.

We note that a recent modelling study by St-Laurent and
others26 came to similar conclusions with regard to the
importance of sea ice production and heat fluxes in generating
a substantial cold event in late 2012. However, their model
suggested that this originated in the north of Pine Island Bay
during a short period of intense sea ice production and heat loss,
while our observational data set suggests that both the heat loss
and resultant cooling were more prolonged. In addition, the
observed trend in deep ocean temperatures was mostly absent
from their model study, as was the reversal in currents.
Nevertheless, their model study provides further evidence that
local atmospheric conditions can have a substantial impact on
intermediate-depth ocean temperatures in this region.

The large interannual variability observed in Pine Island Bay is
not clearly linked with changes at the shelf break, although a
decrease in the on-shelf currents between the 2009–11 and
2012–14 periods might underline the multi-year decline in deep
temperatures. That deep cooling may have enhanced the impact
of local processes on the mid-water column, through promoting

deeper wintertime convection and changes in circulation within
Pine Island Bay. Unfortunately no observations were available
within the eastern trough during this period, so we cannot
rule out the possibility that changes there drove some of the
unexplained changes in heat content in Pine Island Bay.
Nevertheless, this study shows that the impact of shelf-edge
winds and circulation changes on conditions in Pine Island Bay is
less direct than previously suggested and that local atmospheric
forcing strongly modulates the response in the critical 350–700-m
depth range, at least over the observed period. Therefore, it is
likely that other rapidly melting ice shelves across Antarctica will
also be strongly influenced by local atmospheric conditions. If
confirmed, this would underline the importance of atmospheric
and ocean monitoring close to the Antarctic coast to give early
warning of future changes in ice shelf melting and glacial retreat.

Methods
Rotation of current direction. PIG-wards currents are defined as the maximum in
the variance ellipse directed towards PIG. This direction is as follows: iSTAR7,
105�; iSTAR8, 130�; BSR5/iSTAR9, 82�. Figure 4e,f shows that these directions are
broadly aligned with the average currents during the warm period. The qualitative
findings of this paper are not influenced by the exact angle used to define the
PIG-wards direction.

Binning of temperature and salinity data. Temperature and salinity data
are binned for clarity in Fig. 4. Bin edges were defined as every 0.1 �C and
0.025 g kg� 1, and all data within each bin were given equal weight. The key
features evident after binning are also apparent in the raw data, but subsampling or
averaging is necessary for these features to be succinctly plotted. Our conclusions
are not sensitive to the choice of bin size.

Temperature above in situ freezing point. The temperature above freezing is
calculated by subtracting the in situ freezing point (calculated using the TEOS-10
equation of state) from the observed temperatures. Since salinity is necessary to
calculate the in situ freezing point but not observed on the majority of the mooring
instruments, a conversion between temperature and salinity is used based upon
summer ship observations in the region during 2014. These ship observations show
a generally linear relationship (Fig. 4), although there is considerable variability at
colder temperatures due to the variation of salinity in the surface layers. The
average salinity is calculated in temperature increments of 0.05 �C, and this rela-
tionship is then interpolated to the observed temperature. Assuming an uncertainty
of ±0.3 g kg� 1 in salinity, the uncertainty introduced by this conversion is
±0.02 �C for in situ freezing point.

Ocean heat content. Heat content available to melt PIIS is calculated from the
temperature above in situ freezing point between 400 and 700 m. These depths are
used as they lie within the observed range throughout the record, and approxi-
mately coincide with the depth range within the cavity beneath PIIS. The heat
content is calculated using the following equation:

Q ¼
Z z2

z1
rcp T �Tfð Þ; ð1Þ

where z1¼ 700 m, z2 is 400 m, r is the ocean density and cp is the ocean heat
capacity, both calculated from depth-interpolated temperature (T) using the above
conversion to estimate salinity where it was not observed. Tf is the in situ freezing
point of the water. The uncertainty in density and heat capacity due to unknown
variations in salinity is less than 0.1% of their respective average values.

Data availability. The iSTAR mooring data that support the findings of this study
are available from the British Oceanographic Data Centre. The BSR5 mooring data
that support the findings of this study are available in the IEDA MGDS repository
with the identifier doi: 10.1594/IEDA/322014. The CDT (conductivity, temperature
and depth) data that support the findings of this study are freely available in
various national data centres; the compiled data set is available from the corre-
sponding author on reasonable request.
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